• 54

RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ

RoHS Guide in Electronics – RoHS Compliance Guide and FAQ on WEEE,

In this RoHS Guide in Electronics we will learn about RoHS Compliance, FAQ on WEEE, Lead-Free Compliance Guide and Restriction of Hazardous Substances Directive.

If you are in Electronics Industry, PCB Assembly and Manufacturing or Electronics Rework / repairing then you must have heard of RoHS, WEEE and Lead-Free. In this Guide, we will learn:

  1. What is RoHS (Restriction of Hazardous Substances)?
  2. What is WEEE (Waste from Electrical and Electronic Equipment)?
  3. Restriction of Hazardous Substances Directive
  4. What is Lead-Free?

RoHS

What is RoHS?

RoHS stands for Restriction of Hazardous Substances. RoHS, also known as Directive 2002/95/EC, originated in the European Union (EU) and restricts the use of specific hazardous materials found in electrical and electronic products. All applicable products in the EU market after July 1, 2006 must pass RoHS compliance.

RoHS Logo

RoHS Logo

What are Restricted Material and Substances Mandated Under RoHS?

The substances banned under RoHS are:

  1. Lead (Pb)
  2. Mercury (Hg)
  3. Cadmium (Cd)
  4. Hexavalent chromium (CrVI)
  5. Polybrominated biphenyls (PBB)
  6. Polybrominated diphenyl ethers (PBDE).

Four Newly Banned Substances IN RoHS2:

  1. Bis (2-ethylhexyl) phthalate (DEHP)
  2. Butyl benzyl phthalate (BBP)
  3. Dibutyl phthalate (DBP)
  4. Diisobutyl phthalate (DIBP)
RoHS Substances

RoHS Substances

RoHS Substances Limit by Weight

RoHS Substance Permissible Limit
Lead (Pb) < 1000 ppm (0.1%)
Mercury (Hg) < 1000 ppm (0.1%)
Cadmium (Cd) < 100 ppm (0.01%)
Hexavalent Chromium (Cr VI) < 1000 ppm (0.1%)
Polybrominated Biphenyls (PBB) < 1000 ppm (0.1%)
Polybrominated Diphenyl Ethers (PBDE) < 1000 ppm (0.1%)
Bis (2-Ethylhexyl) phthalate (DEHP) < 1000 ppm (0.1%)
Benzyl butyl phthalate (BBP) < 1000 ppm (0.1%)
Dibutyl phthalate (DBP) < 1000 ppm (0.1%)
Diisobutyl phthalate (DIBP) < 1000 ppm (0.1%)

Why is RoHS compliance important?

The restricted materials are hazardous to the environment and pollute landfills, and are dangerous in terms of occupational exposure during manufacturing and recycling.

How are products tested for RoHS compliance?

Portable RoHS analyzers, also known as X-ray fluorescence or XRF metal analyzers are used for screening and verification of RoHS compliance. Other Products are also available to check presence of Hazardous Substances.

Which companies are affected by the RoHS Guide and Directive?

Any business that sells applicable electronic products, sub-assemblies or components directly to EU countries, or sells to resellers, distributors or integrators that in turn sell products to EU countries, is impacted if they utilize any of the restricted materials.

What is RoHS 1?

RoHS 1 restricts the use of 6 hazardous substances  – Lead (Pb), Mercury, Cadmium (Cd), Hexavalent chromium (Cr6+), Polybrominated biphenyls (pbb), Polybrominated diphenyl ethers (PBDE) in electrical and electronic equipment (EEE).

What is RoHS 2?

The RoHS 2 added 4 more hazardous substances to the restricted list thus increasing the list to 10. These are – Bis(2-Ethylhexyl) phthalate (DEHP), Benzyl butyl phthalate (BBP), Dibutyl phthalate (DBP), Diisobutyl phthalate (DIBP).

What is RoHS 3?

RoHS 3, or Directive 2015/863 was published in 2015 by the EU. It adds 4 additional restricted substances to the original list of six, as cited under RoHS 1. Suppliers have time until July 22, 2019 to meet these provisions.

What is RoHS 5?

RoHS 5 refers to compliance for 5 out of the 6 restricted substances (no compliance for lead (Pb).

What is RoHS 6?

RoHS 6 refers to compliance for all 6 restricted hazardious substances.

What is WEEE?

WEEE stands for Waste from Electrical and Electronic Equipment. WEEE, also known as Directive 2002/96/EC, mandates the treatment, recovery and recycling of electric and electronic equipment. All applicable products in the EU market after August 13, 2006 must pass WEEE compliance and carry the “Wheelie Bin” sticker.

WEEE Wheelie Bin

WEEE Wheelie Bin

How are RoHS Guide and WEEE related?

WEEE compliance aims to encourage the design of electronic products, mainly Different Types of PCB, with environmentally-safe recycling and recovery in mind. RoHS compliance dovetails into WEEE by reducing the amount of hazardous chemicals used in Electronic Materials and Consumables.

What is Lead-Free?

Solder Wire with NO LEAD (Pb) is called Lead-Free or Lead-Free Solder. The main composition of lead-free solder are mainly Tin, Silver and Copper (SAC) in different Ratio. Alpha Cookson is world leaders in manufacturing and supply of Lead-free and leaded solder wire, bar, paste and liquid flux.

Lead Free Logo

Lead Free Logo

Lead-Free Soldering – Why?

WEEE Recycle Chart

WEEE Recycle Chart

The simplest explanation for the tremendous interest in lead-free soldering is FEAR: Fear of Legislation, Fear of Trade Barriers, and Fear of Competition. Most companies do not necessarily want to change to lead-free, but rather are motivated by a combination of these three fears.

The WEEE / RoHS directives in Europe and similar mandates in Japan have instilled fear that a legislative body will prohibit the use of lead in electronics soldering.

If a particular country disallows lead in electronics, a trade barrier is created between that country and anyone not capable of providing lead-free electronics solutions. Of course, this also could take place between individual electronic companies.

Some companies already are producing electronics products with lead-free solder alloys and marketing them as such. This has led to fears of being caught behind commercially.

RoHS Guide – FAQ On Lead-Free Soldering

Why is there a push for lead-free solders in electronics soldering applications?

The health and liability risks associated with the use of lead have led to government regulations concerning the elimination of lead from certain manufacturing processes. Lead already has been banned from paint, plumbing, and gasoline. Solder is likely to be regulated in the near future as well.

Why should some lead-free alloys be approached cautiously?

The compositions and traits of lead-free solder alloys vary greatly. However, some alloys should be approached cautiously:

  • Tin migration during high temperature thermocycling is often associated with tin-silver alloys.
  • Alloys with a high percentage of exotic or expensive metals may be cost prohibitive.
  • Very high melting temperatures, which may damage parts, exist with some tin-silver and tin copper alloys.
  • The inevitable damage or destruction of electronic components during repair, such as with conductive adhesives, is something to be wary of.

Are lead-free alloys as durable as tin-lead alloys?

Many of the available lead-free alloys offer significant durability advantages over tin-lead alloys. Benefits such as higher joint strength, better fatigue resistance, improved high temperature life, and harder solder joints are common to some of these alloys. However, these benefits vary greatly among the various lead-free alloys, and research is required in order to choose the correct alloy.

How do lead-free alloys compare to tin-lead alloys for application temperature requirements?

Typically, lead-free alloys have higher melting points than tin-lead alloys. These range from 215°C to 240°C. It is very important to consider the melting point while choosing a lead-free alloy, as many SMD electronic components and materials cannot withstand the very high reflow peak temperatures (upwards of 260°C) of some tin-silver and tin-copper alloys.

Are lead-free alloys compatible with all flux types?

In general, lead-free alloys may be used with most flux chemistry. Again, however, these alloys vary greatly, and compatibility with solder paste, cored solder wire, and liquid flux chemistry is dependent upon the melting point and composition of the alloy.

In what solder forms can lead-free alloys be produced?

Most lead-free alloys are available in all solder forms, including solder paste, cored wire solder, solid wire, bar solder, spheres and preforms. Exceptions to this are alloys that contain a high amount of indium or bismuth, which cannot be produced as cored wire solder due to manufacturing issues.

What are the attributes that one should look for while searching for a lead-free solder alloy?

Lead-free solder alloys should possess the following characteristics:

  • No current or future negative environmental impact
  • Low cost
  • Easily repaired
  • Compatibility with existing parts and processes
  • No toxic or exotic constituents

Are lead-free alloys compatible with no clean flux chemistry?

Many users of fluxes and solder pastes have (justifiably) wondered if they will have to switch chemistry when they switch to a lead-free process. The answer is: It depends. If you switch to a high melting point alloy such as tin-silver or tin-copper, then it is likely that a change will have to be made. However, with lower melting point lead-free alloys (If there exists any) it is much more likely that you can continue to use the same flux chemistry without resulting in charred residues, dewetting, cleaning difficulties, etc. Of course, this is most dependent upon the thermal stability of the flux chemistry being used.

Lead-Free Alloy Element Tolerances

Solder alloys have an acceptable tolerance for each component element in the alloy. Per IPC-J-STD-006, elements that constitute up to 5% of an alloy may vary by up to ±0.2%, while elements that constitute greater than 5% of an alloy may vary by up to ±0.5%.

For example, the Sn63/Pb37 alloy may contain between 62.5% to 63.5% tin and 36.5% to 37.5% lead. The Sn62/Pb36/Ag2 alloy may contain between 61.5% to 62.5% tin, 35.5% to 36.5% lead and 1.8% to 2.2% silver.

Below is a chart of various lead-free alloy compositions and their potential elemental range.

Lead-Free Alloy Element Tolerances

Lead-Free Alloy Element Tolerances

RoHS Certification

RoHS Guide and Directive are now followed around the world. To get RoHS Certification is mandatory in all electronic companies in the EU and many other countries.

How to Get RoHS Certificate

Many companies around the world provide RoHS Compliance Certification. Following steps are followed to get an RoHS Certificate:

  1. Documentation: Purchase RoHS ray material from certified suppliers. Invoices / Bills, Declarations, Test Reports and Certificates for every component and input material are reviewed.
  2. Audit: Inspect and prepare an audit report for the manufacturing processes and make sure they meet RoHS compliance for all the above mentioned six restricted substances
  3. Testing: XRF testing is done by the RoHS Certificate issuing authorities to determine presence of any of the  six restricted RoHS substances.
  4. Certification: RoHS Certificate is issued to the company after successful documentation, audit and testing.

I hope this RoHS Guide helped. Sooner or later, the world has to restrict the use of Hazardous Substances not only in electronics but in all spheres of life if we want a clean and green earth.

FAQs: RoHS in Electronics

RoHS restricts the use of six hazardous substances: lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBBs), and polybrominated diphenyl ethers (PBDEs).

RoHS compliance applies to a wide range of electrical and electronic products, including but not limited to appliances, computers, telecommunications equipment, lighting, medical devices, and control instruments.

RoHS compliance reduces the environmental impact of electronics by minimizing the use of hazardous substances. It also promotes the recycling and safe disposal of electronic waste, protecting both human health and the environment.

To ensure RoHS compliance, manufacturers need to thoroughly assess their products and supply chains to identify and replace restricted substances. They can use various testing methods, documentation, and certifications to verify compliance and communicate it to customers and regulatory authorities.

Related Articles:

Santosh Das

Santosh, founder of this Electronics Tutorial Website, is an Electronics Geek, Blogger and Young Entrepreneur. He possesses vast experience in the field of electronics, electronic components, PCB, Soldering, SMT, Telecommunication, ESD Safety, and PCB Assembly Tools, Equipment and Consumables. Keep visiting for daily dose of Tips and Tutorials.

Also Read:

54 Responses

  1. April 8, 2014

    […] RoHS Compliant […]

  2. April 9, 2014

    […] RoHS Compliant. […]

  3. July 21, 2014

    […] Lead free Solder Wire / Bar / Balls have compliance with all the requirements of RoHS directives. These products offer It has good mechanical strength, higher yield, higher reliability […]

  4. July 21, 2014

    […] flux have compliance with all the requirements of RoHS directives. These products offer It has good mechanical strength, higher yield, higher reliability […]

  5. July 31, 2014

    […] RoHS […]

  6. August 1, 2014

    […] RoHS […]

  7. August 1, 2014

    […] RoHS […]

  8. August 1, 2014

    […] RoHS […]

  9. August 1, 2014

    […] RoHS […]

  10. August 2, 2014

    […] RoHS […]

  11. August 5, 2014

    […] RoHS […]

  12. August 5, 2014

    […] RoHS […]

  13. August 6, 2014

    […] RoHS […]

  14. August 6, 2014

    […] RoHS […]

  15. August 7, 2014

    […] RoHS […]

  16. August 7, 2014

    […] RoHS […]

  17. August 11, 2014

    […] RoHS […]

  18. August 25, 2014

    […] RoHS […]

  19. November 15, 2014

    […] of Chemicals) and WEEE (Waste Electrical and Electronic Equipment Directive). It does not contain RoHS (Restriction of Hazardous Substances) restricted substances, SVHC (Substances of Very High Concern) […]

  20. February 28, 2019

    […] his own SMT consulting service in 1994. He helps companies in successful implementation of SMT, RoHS, BGA and BTC (QFN, DFN and […]

  21. March 4, 2019

    […] RoHS: Restriction of Hazardous Substances [ lead (Pb), mercury (Hg), cadmium (Cd), hexavalent chromium (CrVI), polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE).] […]

  22. March 5, 2019

    […] RoHS: Restriction of Hazardous Substances [ lead (Pb), mercury (Hg), cadmium (Cd), hexavalent chromium (CrVI), polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE).] […]

  23. March 10, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  24. March 13, 2019

    […] few years back, 63/37 tin-lead solder was most common form of solder. But with the introduction of RoHS, the electronic companies are going green and lead-free or Pb-Free solder have gained popularity. […]

  25. March 15, 2019

    […] the introduction of RoHS by the European Union, most electronic companies in the world are moving to lead-free. Melting […]

  26. March 17, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  27. March 21, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  28. March 23, 2019

    […] trend in manufacturing consumer electronics products is the use of Surface Mount Technology and RoHS and […]

  29. March 25, 2019

    […] that facilitates soldering. Earlier lead based tin was used to plate the surfaces, but with RoHS (Restriction of Hazardous Substances) compliance enacted newer lead-free materials such as nickel […]

  30. March 26, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  31. March 27, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  32. March 27, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  33. March 28, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  34. March 29, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  35. April 1, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  36. April 2, 2019

    […] is based in Arizona, United States. All their PCBs are manufactured in Taiwan and China and are RoHS and Lead-Free Compliance. They are one of the largest full service PCB manufacturer and supplier […]

  37. April 7, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  38. April 7, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  39. April 7, 2019

    […] RoHS Guide in Electronics […]

  40. April 20, 2019

    […] the imposition of RoHS (Restriction of Hazardious Substances) by the European Union, more and more electronic manufacturing companies around the world are […]

  41. April 24, 2019

    […] the imposition of RoHS (Restriction of Hazardious Substances) by the European Union, more and more electronic manufacturing companies around the world are […]

  42. August 4, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  43. August 5, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  44. August 11, 2019

    […] the implementation of RoHS (Restriction of Hazardous Substances) in the Electronics Industry by the European Union and Many other countries, most electronic […]

  45. August 12, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  46. August 18, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  47. August 22, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  48. August 27, 2019

    […] is based in Arizona, United States. All their PCBs are manufactured in Taiwan and China and are RoHS and Lead-Free Compliance. They are one of the leading PCB manufacturer and Assembly Services […]

  49. September 2, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  50. September 7, 2019

    […] RoHS Guide in Electronics: RoHS, WEEE and Lead-Free FAQ […]

  51. September 19, 2019

    […] RoHS Guide in Electronics […]

  52. October 12, 2019

    […] is based in Arizona, United States. All their PCBs are manufactured in Taiwan and China and are RoHS and Lead-Free Compliant. They are one of the largest full service PCB manufacturer and supplier […]

  53. March 25, 2020

    […] Place Machines can handle up to 28000 SMD Components per hour. All their PCB processes are fully RoHS compliant. Official […]

  54. May 15, 2020

    […] that facilitates soldering. In the past a lead based tin was used to plate the surfaces, but with RoHS (Restriction of Hazardous Substances) compliance enacted newer materials are being used such as […]

Leave a Reply

Your email address will not be published. Required fields are marked *

Discover more from Electronics Tutorial | The Best Electronics Tutorial Website

Subscribe now to keep reading and get access to the full archive.

Continue reading