Home

Basics of Electronics History of Electronics Electronics Terms Soldering in Electronics Electronic Circuits

Electronic PCB Assembly Machines & Tools

Electronic Components Electronic / Electrical Materials & Consumables Consumer Electronics Electronic Companies PCB
(Printed Circuit Board)
Electronics Articles Electronics News Electronics Videos Electronics Images Electronics Q&A Solar Energy


InductorAn inductor is an electrical device (typically a conducting coil) that introduces inductance into aInductor circuit. An inductor is a passive electrical component designed to provide inductance in a circuit. It is basically a a coil of wire wrapped around an iron core. simplest form an inductor is made up of a coil of wire. The inductance measured in henrys, is proportional to the number of turns of wire, the wire loop diameter and the material or core the wire is wound around.

Inductors are the third and final type of basic circuit component. An inductor is a coil of wire with many windings, often wound around a core made of a magnetic material, like iron.

The properties of inductors derive from a different type of force than the one we invented charge to explain: magnetic force rather than electric force.

When current flows through a coil (or any wire) it produces a magnetic field in the space outside the wire, and the coil acts just like any natural, permanent magnet, attracting iron and other magnets.


If you move a wire through a magnetic field, a current will be generated in the wire and will flow through the associated circuit. It takes energy to move the wire through the field, and that mechanical energy is transformed to electrical energy. This is how an electrical generator works. If the current through a coil is stopped, the magnetic field must also disappear, but it cannot do so immediately. The field represents stored energy and that energy must go somewhere. The field contracts toward the coil, and the effect of the field moving through the wire of the coil is the same as moving a wire through a stationary field: a current is generated in the coil. This induced current acts to keep the current flowing in the coil; the induced current opposes any change, an increase or a decrease, in the current through the inductor. Inductors are used in circuits to smooth the flow of current and prevent any rapid changes.

The current in an inductor is analogous to the voltage across a capacitor. It takes time to change the voltage across a capacitor, and if you try, a large current flows initially. Similarly, it takes time to change the current through an inductor, and if you insist, say by opening a switch, a large voltage will be produced across the inductor as it tries to force current to flow. Such induced voltages can be very large and can damage other circuit components, so it is common to connect some element, like a resistor or even a capacitor across the inductor to provide a current path and absorb the induced voltage. (Often, a diode, which we will discuss later, is used.)

Inductors are measured in henrys (h), another very big unit, so you are more likely to see millihenries, and microhenries. There are almost no inductors on the RoboBoard, but you will be using some indirectly: the motors act like inductors in many ways.

 
In a sense an electric motor is the opposite of an electrical generator. If current flows through a wire that is in a magnetic field (produced either by a permanent magnet or current flowing through a coil), a mechanical force will be generated on the wire.

That force can do work. In a motor, the wire that moves through the field and experiences the force is also in the form of a coil of wire, connected mechanically to the shaft of the motor. This coil looks like and acts like an inductor; if you turn off the current (to stop the motor), the coil will still be moving through the magnetic field, and the motor now looks like a generator and can produce a large voltage. The resulting inductive voltage spike can damage components, such as the circuit that controls the motor current.

Combinations of Inductors : You already know how inductors act in combination because they act just like resistors. Inductance adds in series. This makes physical sense because two coils of wire connected in series just looks like a longer coil. Parallel connection reduces inductance because the current is split between the several coils and the fields in each are thus weaker.

Learn More on Basics of Electronics:

Electronics Definitions: Electronics is the branch of science that deals with the study of flow and control of electrons (electricity) and the study of their behavior and effects in vacuums, gases, and semiconductors, and with devices using such electrons.

Rules of Electrical Circuits: * A voltage of 1V across a resistance of 1 Ohm will cause a current flow of 1 Amp, and the resistor will dissipate 1 Watt (all as heat).

What is an electronic circuit? A circuit is a structure that directs and controls electric currents, presumably to perform some useful function. The very name "circuit" implies that the structure is closed, something like a loop.

Current: Charge is mobile and can flow freely in certain materials, called conductors. Metals and a few other elements and compounds are conductors. Materials that charge cannot flow through are called insulators. Air, glass, most plastics, and rubber are insulators, for example. And then there are some materials called semiconductors, that seemed to be good conductors sometimes but much less so other times. Silicon and germanium are two such materials. The flow of charge is called electrical current. Current is measured in amperes (a), amps for short (named after another French scientist who worked mostly with magnetic effects).

Wiring Symbols: There are many different representations for basic wiring symbols, and these are the most common.  The conventions I use for wires crossing and joining are marked with a star (*) - the others are a small sample of those in common use, but are fairly representative.  Many can be worked out from their position in the circuit diagram (schematic).

Voltage: Voltage is something is a type of "pressure" that drives electrical charges through a circuit.
Bodies with
opposite charges attract, they exert a force on each other pulling them together. The magnitude of the force is proportional to the product of the charge on each mass.

What is charge?  Charge may be defined as the quantity of unbalanced electricity in a body (either positive or negative) and construed as an excess or deficiency of electrons. Charge comes in two forms, positive (+) , and  negative charge ( - ) .

Batteries: Charges can be separated by several means to produce a voltage. A battery uses a chemical reaction to produce energy and separate opposite sign charges onto its two terminals. As the charge is drawn off by an external circuit, doing work and finally returning to the opposite terminal, more chemicals in the battery react to restore the charge difference and the voltage. The particular type of chemical reaction used determines the voltage of the battery, but for most commercial batteries the voltage is about 1.5 V per chemical section or cell.

Resistors: A Resistor is an electrical device that resists the flow of electrical current. It is a passive device used to control, or impede the flow of, electric current in an electric circuit by providing resistance, thereby developing a drop in voltage across the device. The value of a resistor is measured in ohms and represented by the Greek letter capital omega. Resistors usually have a brown cylindrical body with a wire lead on each end, and colored bands that indicate the value of the resistor.

Ohm’s Law: Ohm's law describes the relationship between voltage, V , which is trying to force charge to flow, resistance, R , which is resisting that flow, and the actual resulting current I .

Power: Power is the Electric energy produced per unit time.

Capacitors: In simple words, we can say that a capacitor is a device used to store and release electricity, usually as the result of a chemical action. Also referred to as a storage cell, a secondary cell, a condenser or an accumulator. A Leyden Jar was an early example of a capacitor.

Semiconductor devices: A conductor made with semiconducting material. Semiconductors are made up of a substance with electrical properties intermediate between a good conductor and a good insulator. A semiconductor device conducts electricity poorly at room temperature, but has increasing conductivity at higher temperatures. Metalloids are usually good semiconductors.

Silicon: Silicon, atomic number 14 on the periodic table, is a semiconducting material from which integrated circuits (computer chips of all types--processors, memory chips, etc.; CCDs; transistors; etc.) are created.

Silicon is one of the most common elements. Silicon is also the semiconductor material out of which almost all modern transistors are made.

Diodes: A Diode is an electronic device that allows current to flow in one direction only. It is a semiconductor that consists of a p-n junction. They are used most commonly to convert AC to DC, because they pass the positive part of the wave, and block the negative part of the AC signal, or, if they are reversed, they pass only the negative part and not the positive part.

Electronic Component name abbreviations: Here is a list of Electronic Component name abbreviations widely used in the electronics industry.

What is Energy Star?

Home Electrical Wiring Types and Rules

Surface Mount Device (SMD) or Surface Mount Electronic Components

SMD Coil – Surface Mount Chip Coil Guide

All about Semiconductor

Ball Grid Array (BGA) Package

SMD Surface Mount Electronic Components for SMT

How to Solder – Hand Soldering Tutorial

Printed Circuit Board: Design, Diagram and Assembly

Active and Passive Electronic Components

Electronic Components, Parts and Their Function

How Electronic / Electrical Circuit Works

How to Generate Electricity – How is Electricity Generated
 

Home

Basics of Electronics History of Electronics Electronics Terms Soldering in Electronics Electronic Circuits

Electronic PCB Assembly Machines & Tools

Electronic Components Electronic / Electrical Materials & Consumables Consumer Electronics Electronic Companies PCB
(Printed Circuit Board)
Electronics Articles Electronics News Electronics Videos Electronics Images Electronics Q&A Solar Energy

Electronicsandyou.com explains the basics of electronics, history of electronics, terms used in Electronics, importance of Electronics, analog and digital electronics, electronics PCB assembly , machine and tools, electronics components, electronics / electrical materials and consumables, electronics PCB soldering equipments, wave soldering machines for electronics, SMT and BGA in electronics, dispensing systems for electronics industry, tools for electronics, electronic component forming and cutting machines, selective soldering systems for electronics PCB assembly and rework, electronic components including - Resistors, Capacitors, Thermistors, Inductors, Varistors, Diodes, SMD (Surface Mount Devices), terminals, connectors, disconnectors, heat shrink, soldering materials and consumables including - Solder Wire, Solder Bar, Solder Paste, Solder Balls, Soldering Flux, Insulation and Masking Materials, Laminates, Circuit Works Materials, ESD Control Materials including Anti-Static Solutions, Staticide Static Control and Cleaning Wipes, Surface Resistivity Meters, Ionizers, Wrist Straps, Heal Straps, ESD Bags, ESD Mat, Cable Ties and everything else for Electronics PCB manufacturing assembly and rework or repair.

Copyright © 2012-2013 Electronicsandyou.com  Electronics Tutorial | The Best Electronics Tutorial Website. All Rights Reserved.